/

名大・理研・JSTなど、生物集団の移動軌跡から相互作用の規則を理論とデータから推定できる機械学習技術を開発

発表日:2021年12月06日

「誰を見てどう動いたか」

理論とデータから推定できる機械学習技術を開発!

~生物集団の移動軌跡から相互作用の規則を学習~

国立大学法人東海国立大学機構 名古屋大学大学院情報学研究科の藤井 慶輔 准教授(理化学研究所革新知能統合研究センター客員研究員)と筒井 和詩 特任助教、大学院環境学研究科の依田 憲 教授、大学院理学研究科の田中 良弥 助教らの研究グループは、理化学研究所、科学技術振興機構(JST)、同志社大学、九州大学、西スイス応用科学大学(スイス)、基礎生物学研究所、東海大学との共同研究で、生物集団の移動軌跡から相互作用の規則、例えば「誰を見てどう動いたか」を理論とデータから推定できる機械学習(注 1))技術を新たに開発しました。

本研究により、これまで概念的であった動物行動学の理論モデルに基づき、1 つの機械学習モデルを用いて、多種の生物集団に柔軟に適用できる定量的な解析方法が開発されました。これにより、人間を含む様々な生物の集団移動に関する一般的な法則や、その多様性の発見へと繋げていくことが期待できます。

本研究成果は、2021年12月6日(月)から14日(火)までオンラインで開催される、人工知能・機械学習分野における世界最高峰の国際会議の1つである「Neural Information Processing Systems 2021」(以下「NeurIPS 2021」)で発表されます。

本研究は、2020年度から始まった科学技術振興機構さきがけ「信頼されるAIの基盤技術」、2021年度から始まった科研費学術変革領域(A)「サイバー・フィジカル空間を融合した階層的生物ナビゲーション」、2019年度から始まった科学技術振興機構 CREST「数理的情報活用基盤」などの支援のもとで行われたものです。

【ポイント】

・生物集団の移動軌跡から、相互作用の規則を推定する手法を開発した。

・動物行動学の理論モデルと深層学習を組み合わせることで、多種の生物集団にも柔軟かつ定量的に解析できる方法を初めて提案した。

・魚や鳥の集団で有名なボイドモデル(注 2))や、非線形振動子の蔵本モデル(注 3))のシミュレーションデータを用い、相互作用の関係性をデータから正確に推定できた。

・コウモリ、マウス、鳥、ハエの集団移動データを用いて、同一の深層学習(注 4))モデルからそれぞれ新たな知見を得られた。

※以下は添付リリースを参照

リリース本文中の「関連資料」は、こちらのURLからご覧ください。

添付リリース

https://release.nikkei.co.jp/attach/623051/01_202112061036.pdf

すべての記事が読み放題
有料会員が初回1カ月無料

産業で絞り込む
  • すべて
  • 情報・通信
  • メディア
  • 電機
  • 金融・保険
  • 自動車
  • 輸送・レジャー
  • 食品
  • 流通・外食
  • 日用品
  • 医薬・医療
  • 建設・不動産
  • 機械
  • 素材・エネルギー
  • 商社・サービス
  • すべて
  • 情報・通信
  • メディア
  • 電機
  • 金融・保険
  • 自動車
  • 輸送・レジャー
  • 食品
  • 流通・外食
  • 日用品
  • 医薬・医療
  • 建設・不動産
  • 機械
  • 素材・エネルギー
  • 商社・サービス

セレクション

新着

注目

ビジネス

ライフスタイル

新着

注目

ビジネス

ライフスタイル

新着

注目

ビジネス

ライフスタイル

フォローする
有料会員の方のみご利用になれます。気になる連載・コラム・キーワードをフォローすると、「Myニュース」でまとめよみができます。
新規会員登録ログイン
記事を保存する
有料会員の方のみご利用になれます。保存した記事はスマホやタブレットでもご覧いただけます。
新規会員登録ログイン
Think! の投稿を読む
記事と併せて、エキスパート(専門家)のひとこと解説や分析を読むことができます。会員の方のみご利用になれます。
新規会員登録 (無料)ログイン
図表を保存する
有料会員の方のみご利用になれます。保存した図表はスマホやタブレットでもご覧いただけます。
新規会員登録ログイン