/

京大・東大など、CH3NH3PbCl3単結晶にレーザーパルスを照射した際広い波長範囲の光が発生する機構を解明

発表日:2020年7月29日

光と固体の量子力学的な相互作用による新たな光の発生機構を解明

―高次高調波光の発生機構の解明に向けた新たな知見―

■概要

京都大学化学研究所の佐成晏之 理学研究科博士課程学生、廣理英基 准教授、金光義彦 教授、東京大学大学院工学系研究科の篠原康 特任助教、石川顕一 教授、同大学附属物性研究所の板谷治郎 准教授、国立研究開発法人量子科学技術研究開発機構の乙部智仁 上席研究員、筑波大学計算科学研究センターの佐藤駿丞 助教(マックスプランク研究所 客員研究員兼任)らの研究グループは、ワイドギャップペロブスカイト半導体であるCH3NH3PbCl3単結晶に高い電場強度の中赤外領域のレーザーパルスを照射すると、可視から紫外にわたる幅広い波長範囲の光が発生することを発見し、その発生機構を解明しました。この現象は高次高調波発生(1))と呼ばれ、従来、原子や分子などの気体において広く調べられ、X線光源やアト秒の光パルスを発生する技術へと応用されています。一方で、固体は気体に比べて高い電子密度を持つために、高効率でコンパクトな光源となり、デバイス開発への応用が期待されています。しかし、多くの原子やイオンが集まった固体においては、光が作用する電子系のエネルギー状態は極めて複雑となり、高次高調波の発生の理解はほとんど進んでいませんでした。本研究では、複雑な電子状態を計算に取り込むことにより、発生効率の励起光強度依存性や結晶角度依存性などの実験結果を再現することに成功しました。これらの精密な実験と理論計算との比較によって、従来発生機構として考えられてきた強光電場で駆動される電子の運動だけでなく、価電子帯から伝導帯に励起されるキャリアの応答の非線形性が重要な役割を果たすことをはじめて明らかにしました。

本研究成果は、2020年7月30日に米国物理学会が発行する学術誌「Physical Review B:Condensed Matter and Materials Physics(Rapid Communication)」に掲載されます。

※図は添付の関連資料を参照

1.背景

長い波長を持つテラヘルツ(2))から中赤外光領域において、高強度な短パルスレーザー光源の開発が進展し、固体試料を破壊することなく強電場を印加することが可能となり、従来にない非線形光学現象が現れる強電場光物理の研究分野が急速に発展しています。典型的な強電場非線形光学現象の1つに、高次高調波発生という現象があります。これは、入射したレーザー光の整数倍のエネルギーを持つ高次成分の光を発生する現象であり、すでに原子や分子といった気体からの高次高調波発生の研究は世界的な活況をもたらし、深紫外からX線領域にわたる新たな光源開発や、アト秒のレーザーパルスの発生源として広く利用されています。一方で固体では、気体とは異なり、原子やイオンが高密度に詰まった状態をとるため、より高輝度でコンパクトな光源の開発とその応用が期待されます。ユニークな電子状態を持つ固体物質からの高次高調波発生の観測は、固体の物性を理解するうえで重要であり、さらに新しい計測・分析技術につながる可能性があります。従来の高次高調波発生のメカニズムとしては(図(左図))、励起光パルスによって価電子帯から伝導帯に励起されたキャリア(電子、正孔)が、レーザー電場によって強く揺さぶられて生じるバンド内電流、またはバンド間で生成し再結合するバンド分極からの放射が主要な寄与と考えられてきました。しかし、これまで価電子帯から伝導帯への励起過程がこれらの成分に与える影響についての明確に取り扱った研究はなく、その発生メカニズムは未解明でした。

※以下は添付リリースを参照

リリース本文中の「関連資料」は、こちらのURLからご覧ください。

https://release.nikkei.co.jp/attach_file/0538365_01.jpg

添付リリース

https://release.nikkei.co.jp/attach_file/0538365_02.pdf

すべての記事が読み放題
有料会員が初回1カ月無料

産業で絞り込む
  • すべて
  • 情報・通信
  • メディア
  • 電機
  • 金融・保険
  • 自動車
  • 輸送・レジャー
  • 食品
  • 流通・外食
  • 日用品
  • 医薬・医療
  • 建設・不動産
  • 機械
  • 素材・エネルギー
  • 商社・サービス
  • すべて
  • 情報・通信
  • メディア
  • 電機
  • 金融・保険
  • 自動車
  • 輸送・レジャー
  • 食品
  • 流通・外食
  • 日用品
  • 医薬・医療
  • 建設・不動産
  • 機械
  • 素材・エネルギー
  • 商社・サービス

セレクション

新着

注目

ビジネス

ライフスタイル

新着

注目

ビジネス

ライフスタイル

新着

注目

ビジネス

ライフスタイル

フォローする
有料会員の方のみご利用になれます。気になる連載・コラム・キーワードをフォローすると、「Myニュース」でまとめよみができます。
新規会員登録ログイン
記事を保存する
有料会員の方のみご利用になれます。保存した記事はスマホやタブレットでもご覧いただけます。
新規会員登録ログイン
Think! の投稿を読む
記事と併せて、エキスパート(専門家)のひとこと解説や分析を読むことができます。会員の方のみご利用になれます。
新規会員登録 (無料)ログイン
図表を保存する
有料会員の方のみご利用になれます。保存した図表はスマホやタブレットでもご覧いただけます。
新規会員登録ログイン